Changes in Bacterial Populations During Bioremediation of Soil Contaminated with Petroleum Hydrocarbons
2016
de la Cueva, Sergio Cisneros | Rodríguez, César Hernández | Cruz, Nicolás Oscar Soto | Rojas Contreras, Juan Antonio | Miranda, Javier López
Using an indoor microcosm assay, we analyzed the biodegradation of total petroleum hydrocarbons (TPHs) by autochthonous bacterial populations in mining soil in the presence of a surfactant (Tween 80). The kinetic behavior of TPH biodegradation involved fast and slow stages. Initially, heterotrophic and hydrocarbonoclastic bacteria increased in abundance by an order of magnitude, but both groups decreased to close to their initial population sizes by the end of experiment. The most efficient final biodegradation (61.5 %) was achieved using soil with 0.5 % added surfactant. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were used to analyze changes in the bacterial community structure. During the fast biodegradation phase, bacterial species richness as indicated by DGGE profiles was reduced after long periods of TPH biodegradation with exposure to Tween 80. The distribution of families was modified, but no particular pattern could be identified. The main bacterial genera were Acinetobacter, Pedomicrobium, Halomonas, Rhizobium, Cryobacterium, Pseudomonas, Lysobacter, Thermomonas, and Stenotrophomonas. Acinetobacter exhibited the highest species richness and was the most abundant and persistent genus, followed by Pedomicrobium and Rhizobium. Decreasing TPH biodegradation can be attributed to a reduction in the microbial population and the disappearance of most of the initial bacterial genera. The correlation between TPH biodegradation and microbial population dynamics helps explain long bioremediation times and can facilitate actions for increasing bioremediation efficiency.
显示更多 [+] 显示较少 [-]