Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture
2017
Shen, Yu | Li, Jinfeng | Gu, Ruochen | Yue, Le | Zhan, Xinhua | Xing, Baoshan
Leaf is an important organ in responding to environmental stresses. To date, chlorophyll metabolism under polycyclic aromatic hydrocarbon (PAH) stress is still unclear. Here we reveal, for the first time, the chlorophyll metabolism of wheat seedling leaves in response to phenanthrene (a model PAH) exposure. In this study, the hydroponic experiment was employed, and the wheat seedlings were exposed to phenanthrene to observe the response at day 1, 3, 5, 7 and 9. Over the exposure time, wheat leaf color turns light. With the accumulation of phenanthrene, the concentrations of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide increase while the concentrations of porphobilinogen and Chlorophyll b decrease. Also chlorophyll a content rises initially and then declines. Uroporphyrinogen III synthase and chlorophyllase are activated and porphobilinogen deaminase activity declines in the treatments. Both chlorophyll synthesis and degradation are enhanced, but the degradation rate is faster. Phenanthrene accumulation has significant and positive effects on increase of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide concentrations. There is a negative correlation between phenanthrene accumulation and total chlorophyll. Additionally, the leaf moisture increases. Therefore, it is concluded that wheat leaf chlorosis results from a combination of accelerated chlorophyll degradation and elevated leaf moisture under phenanthrene exposure. Our results are helpful not only for better understanding the toxicity of PAHs to plants and crop PAH-adaptive mechanism in the environment, but also for potentially employing the changes of the chlorophyll-synthesizing precursors and enzyme activities in plant leaves as indicators of plant response to PAH pollution.
显示更多 [+] 显示较少 [-]