Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia
2021
Kim, Eunhye | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Soontae
Emissions reductions in upwind areas can influence the PM₂.₅ concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM₂.₅ precursor controls on changes in downwind PM₂.₅ concentrations. In this study, we analyzed the overall impact of PM₂.₅ precursor emission controls in upwind areas on PM₂.₅ in downwind areas with two types of impacts: “direct impact” and “cross impact.” The former refers to PM₂.₅ changes in downwind areas due to the transported PM₂.₅ itself, whereas the latter represents PM₂.₅ changes due to reactions between the transported gaseous precursors and intermediates (i.e., HNO₃) originating from upwind areas and locally emitted precursors (i.e. NH₃) in the downwind areas. As a case study, we performed air quality modeling for Northeast Asia for January 15–17, 2016 by setting China and South Korea as the upwind and downwind areas, respectively. To account for potential spatiotemporal variations in NH₃ emissions in downwind areas, we considered two NH₃ conditions. When NOx emissions in China were reduced by 35%, in downwind areas the PM₂.₅ concentrations decreased by 2.2 μg/m³ under NH₃-rich conditions, while PM₂.₅ concentrations increased by 2.3 μg/m³ under NH₃-poor conditions. The direct impact increased by 4.0 μg/m³ in both cases due to upwind NOₓ disbenefit effects. However, the cross impacts led to a PM₂.₅ decrease of 6.2 μg/m³ under NH₃-rich conditions versus a PM₂.₅ increase of 1.7 μg/m³ under NH₃-poor conditions. We noted that PM₂.₅ concentrations in the downwind areas may not improve unless a cross impact outweighs a direct impact. This may be one of the reasons why South Korea PM₂.₅ concentrations have not declined despite efforts by China to reduce their PM₂.₅ precursor emissions.
显示更多 [+] 显示较少 [-]