Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development
2012
Beucher, Anthony | Martín, Mercè | Spenle, Caroline | Poulet, Martine | Collin, Caitlin | Gradwohl, Gérard
During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3⁺ progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3Cʳᵉᴱᴿᵀ/⁺) and Neurog3-deficient (Neurog3Cʳᵉᴱᴿᵀ/Cʳᵉᴱᴿᵀ) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities.
显示更多 [+] 显示较少 [-]