Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019
2021
Zhao, Shuang | Tian, Hezhong | Luo, Lining | Liu, Huanjia | Wu, Bobo | Liu, Shuhan | Bai, Xiaoxuan | Liu, Wei | Liu, Xiangyang | Wu, Yiming | Lin, Shumin | Guo, Zhihui | Lv, Yunqian | Xue, Yifeng
To explore high-resolution temporal variation characteristics of atmospheric metal elements concentration and more accurate pollution sources apportionment, online monitoring of metal elements in PM₂.₅ with 1-h time resolution was conducted in Beijing from August 22, 2018 to August 21, 2019. Concentration of 18 elements varied between detection limit (ranging from 0.1 to 100 ng/m³) and nearly 25 μg/m³. Si, Fe, Ca, K and Al represented major elements and accounted for 93.47% of total concentration during the study period. Compared with previous studies, airborne metal pollution in Beijing has improved significantly which thanks to strict comprehensive control measures under the Clean Air Action Plan since 2013. Almost all elements present higher concentrations on weekdays than weekends, while concentrations of elements associated with dust sources during holidays are higher than those in working days after the morning peak, and there is almost no concentration difference in the evening peak period. Soil and dust, vehicle non-exhaust emissions, biomass, industrial processes and fuel combustion were apportioned as main sources of atmospheric metal pollution, accounting for 63.6%, 18.4%, 16.8%, 1.0% and 0.18%, respectively. Furthermore, main occurrence season of metal pollution is judged by characteristic radar chart of varied metal elements proposed for the first time in this study, for example, fuel combustion type pollution mainly occurs in winter and spring. Results of 72-h backward trajectory analysis of air masses showed that, except for local emissions, atmospheric metal pollution in Beijing is also affected by regional transport from Inner Mongolia, Hebei, the Bohai Sea and Heilongjiang.
显示更多 [+] 显示较少 [-]