The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO2) retention and transport in geochemically heterogeneous media
2020
Rastghalam, Zahra Sadat | Yan, Chaorui | Shang, Jianying | Cheng, Tao
Natural media such as soil and sediment contain mineralogical and organic components with distinct chemical, surface, and electrostatic properties. To better understand the role of various soil and sediment components on particle transport, columns were packed with quartz sand and natural sediment with added Fe oxyhydroxide coating, illite clay, and peat moss to investigate how these added components influence nTiO₂ retention and transport in geochemically heterogeneous medium. Results showed that nTiO₂ transport was low at pH 5, attributable to the electrostatic attraction between positively-charged nTiO₂ and negatively-charged medium. While illite did not notably affect nTiO₂ transport at pH 5, Fe oxyhydroxide coating increased nTiO₂ transport due to electrostatic repulsion between Fe oxyhydroxide and nTiO₂. Peat moss also increased nTiO₂ transport at pH 5, attributable to the increased DOC concentration, which resulted in higher DOC adsorption to nTiO₂ and intensified electrostatic repulsion between nTiO₂ and the medium. At pH 9, nTiO₂ transport was high due to the electrostatic repulsion between negatively-charged nTiO₂ and medium surfaces. Fe oxyhydroxide coating at pH 9 slightly delayed nTiO₂ transport due to electrostatic attraction, while illite clay and peat moss substantially inhibited nTiO₂ transport via straining/entrapment or electrostatic attraction. Overall, this study demonstrated that pH has a considerable effect on how minerals and organic components of a medium influence nTiO₂ transport. At low pH, electrostatic attraction was the dominant mechanism, therefore, nTiO₂ mobility was low regardless of the differences in mineralogical and organic components. Conversely, nTiO₂ mobility was high at high pH and nTiO₂ retention was dominated by straining/entrapment and sensitive to the mineralogical and organic composition of the medium.
显示更多 [+] 显示较少 [-]