Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters
2015
Sahiner, Nurettin | Seven, Fahriye | Al-lohedan, Hamad
P(Acrylamide) (p(AAm)) cryogel with superporous structure was synthesized by employing a cryopolymerization technique under freezing conditions. The prepared cryogels were modified by amidoximation to generate new functional groups as amid-p(AAm) cryogel, that binds metal ions, and the metal nanoparticles of those ions were prepared via in situ reduction method. The prepared amid-p(AAm)-M cryogel composites (M: Cu, Ni, and Co) were used as superporous reactor for the catalytic reduction of toxic phenol compounds 2- and 4-nitrophenol (2- and 4-NP) and some dyes methylene blue (MB) and Eosin Y (EY). P(AAm) cryogels and their metal composites were characterized by using FT-IR analysis, SEM images, and AAS measurements. The impact of porosity, the types and amount of metal catalyst, temperature of reaction medium, and so on were investigated for toxic 2-NP reduction by amid-p(AAm)-M cryogel composites. Very high total turnover frequencies (TOF) and low activation energy (Ea) values of 2.46 (mole 2-NP) (mole Cu. min)⁻¹and 20.2 kJmol⁻¹were obtained for catalytic reduction of 2-NP compound catalyzed by amid-p(AAm)-Cu cryogel composites. Consequently, superporous p(AAm) cryogel is the perfect support material for metal nanoparticle preparation and use in catalytic reduction reactions.
显示更多 [+] 显示较少 [-]