Integrative design of the optimal biorefinery and bioethanol supply chain under the water-energy-food-land (WEFL) nexus framework
2021
You, Chanhee | Han, Seulki | Kim, Jiyong
This study presents a comprehensive decision model for the integrative design of a biorefinery for bioethanol production and its supply chain (BPSC) under the water-energy-food-land (WEFL) nexus framework. A new optimization model was developed using a mixed integer linear programming to simultaneously identify the optimal process configuration of a bioethanol production plant and the optimal bioethanol supply network. The objective function of the model is to minimize the total annual cost for establishing and operating the BPSC to meet society’s needs (energy, water and food) under the limited resources and land availabilities, and technology capacity. The proposed model can provide the optimal solutions for design and operation of the BPSC: i) the types, and quantities of feedstocks; ii) types, number, and location of facilities and; iii) regional flows. The capability of the proposed model was validated through the case study of Jeju Island, Korea, with two scenarios: BPSC by cost (COPT) and nexus (NOPT) optimization. As a result, it was identified that the BPSC in NOPT requires higher energy supply cost (8.55 B$) than the COPT (6.44 B$). However, the BPSC in NOPT can satisfy the society demands with relatively smaller consumption of occupied land (2%), fresh water (30%) and primary energy consumption (64%) than that of the COPT, respectively.
显示更多 [+] 显示较少 [-]