High-Performance Removal of Phosphate from Water by Graphene Nanosheets Supported Lanthanum Hydroxide Nanoparticles
2014
Zhang, Ling | Gao, Yan | Zhou, Qi | Kan, Jin | Wang, Yong
A novel high-capacity phosphate removal adsorbent of graphene nanosheets (GNS) supported lanthanum hydroxide (LaOH) is prepared. The phosphate adsorption performance for GNS-LaOH is examined by a batch adsorption method from aqueous solutions. The Freundlich and Langmuir models are used to simulate the sorption equilibrium, which reveal that the Langmuir model has a better correlation with the experimental data. The maximum adsorption capacity is calculated to be 41.96 mg/g. The kinetic data from the adsorption of phosphate is suggested as the pseudo-second-order model, and the multi-linearity adsorption process is observed in the intraparticle diffusion model, indicating that a chemisorption process is dominant in the adsorption of phosphate. The phosphate adsorption mechanism is explored by analyzing the Fourier transform infrared spectroscopy (FT-IR) and the relationship between the adsorption amount and the pH value of phosphate solution. Ligand exchange and electrostatic and Lewis acid–base interactions are determined to be three main factors for phosphate adsorption.
显示更多 [+] 显示较少 [-]