The potential of foodwaste leachate as a phycoremediation substrate for microalgal CO2 fixation and biodiesel production
2021
Wu, Kam-chau | He, Jianzong | Tang, Chin-cheung | Yau, Yiu-hung
Foodwaste leachate (FWL) is often generated during foodwaste treatment processes. Owing to its high nutrient content, FWL has high potential for phycoremediation, a microalgal technology application for water treatment while acting as CO₂ fixation tank. Additionally, the end product of microalgal from phycoremediation can be potentially used for biodiesel production. Therefore, the phycoremediation has drawn a lot of attention in recent decades. This study evaluates the performance of microalgal foodwaste leachate treatment and the potential of utilizing FWL as medium for microalgal biodiesel production. Two microalgal species, Dunaliella tertiolecta and Cyanobacterium aponinum, were selected. For each species, two experimental levels of diluted FWL were used: 5 and 10% FWL. The partial inhibition growth model indicates that some inhibit factors such as ammonia; total suspended solids and oil and grease (O&G) content suppress the microalgal growth. Most of the nutrient such as nitrogen and phosphorus (> 80%) can be removed in the last day of phycoremediation by D. tertiolecta. C. aponinum also show considerable removal rate on total nitrogen ammonia and nitrate (> 60%). Biomass (0.4–0.5 g/L/day) of D. tertiolecta and C. aponinum can be produced though cultivated in diluted FWL. The bio-CO₂ fixation rates of the two species were 610.7 and 578.3 mg/L/day of D. tertiolecta and C. aponinum. The strains contain high content of saturated fatty acid such as C₁₆ and C₁₈ making them having potential for producing good quality biodiesel.
显示更多 [+] 显示较少 [-]