Effects of Operation Variables and Electro-kinetic Field on Soil Washing of Arsenic and Cesium with Potassium Phosphate
2017
Mao, Xinyu | Han, FengxiangX. | Shao, Xiaohou | Arslan, Zikri | McComb, Jacqueline | Chang, Tingting | Guo, Kai | Çelik, Ahmet
The operation variables and electro-kinetic field (EKF) were investigated to enhance the remediation of arsenic (As)- and cesium (Cs)-contaminated soils with soil washing. Extractant types, concentrations, liquid/solid (L/S) ratios, solution pH values, washing temperatures, and agitation modes were important criteria to determine the efficiency of soil washing. The KH₂PO₄ was proved to be a suitable alternative to Na₂EDTA in extracting As and Cs from contaminated soils. A 2-h washing with KH₂PO₄ at concentration of 0.01 M and L/S ratio of 20 mL g⁻¹ showed the most efficient washing performance. In addition, the lower solution pH, higher temperature, and ultrasound also favored soil washing of As and Cs with KH₂PO₄. The EKF greatly enhanced metals extraction with soil washing. It offered acidic soil environment around the anode areas for the release of soluble Cs from its soil solid-phase components before soil washing. Moreover, the alkalization around the cathode areas also benefited the desorption of stable As since labile As were mainly presented in anionic forms. The effect of CA for neutralizing OH⁻ was proved to be limited, while the reversed subsequent EKF process effectively alleviated Cs precipitation generated during the initial EKF process. It also effectively restored soil pH altered by the initial EKF. The overall EKF (4 V cm⁻¹) enhanced removal efficiency of As and Cs with soil washing from the anode area was 37 and 31%, respectively. Higher removal of As (52%) was obtained in the cathode area. Moreover, the reversed EKF resulted in another 28% removal of Cs in the initial cathode area which showed the capacity of EKF on continuous soil metal remediation.
显示更多 [+] 显示较少 [-]