Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil
2021
Yu, Hong | Zhang, Zheng | Zhang, Ying | Song, Qidao | Fan, Ping | Xi, Beidou | Tan, Wenbing
Plastic mulching and straw incorporation are common agricultural practices in China. Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments. Straw incorporation has many effects on the storage of soil organic carbon (SOC) and greenhouse gas emissions, but these effects have not been studied in the presence of microplastic pollution. In this study, 365-day soil incubation experiments were conducted to assess the effects of maize straw and polyethylene microplastics on SOC fractions and carbon dioxide (CO₂) and nitrous oxide (N₂O) emissions in two different soils (fluvo-aquic and latosol). Against the background of straw incorporation, microplastics reduced the mineralization and decomposition of SOC, resulting in a microbially available SOC content decrease by 18.9%. In addition, microplastics were carbon-rich, but relatively stable and difficult to be used by microorganisms, thus increasing the mineral-associated SOC content by 52.5%. This indicated that microplastics had adverse effects on microbially available SOC and positive effects on mineral-associated SOC. Microplastics also decreased coarse particulate SOC (>250 μm), and increased non-aggregated silt and clay aggregated SOC (<53 μm). Furthermore, microplastics changed microbial community compositions, thereby reducing the CO₂ and N₂O emissions of straw incorporation by 26.5%–33.9% and 35.4%–39.7%, respectively. These results showed that microplastics partially offset the increase of CO₂ and N₂O emissions induced by straw incorporation. Additionally, the inhibitory effect of microplastics on CO₂ emissions in fluvo-aquic soil was lower than that in latosol soil, whereas the inhibitory effect on N₂O emissions had the opposite trend.
显示更多 [+] 显示较少 [-]