Adsorption Characteristics of Tetracycline onto Biochars as Affected by Solution Chemistry Conditions and Ball Milling Treatment
2020
Ma, Xiaohan | Xin, Yanjun | Yan, Qinghua | Pan, Xiangrui | Xin, Shuaishuai | Huang, Xiaomin | Chen, Qinghua | Liu, Guocheng
Biochars from Chinese medicine material residues and furfural residues at 300–600 °C (MBC300–MBC600 and FBC300–FBC600) were used as adsorbents for removing tetracycline (TC) from water. The influence of pH and co-existing of cations or low molecular weight organic acids (LMWOAs) was investigated on TC adsorption. Further, the bulk biochars were treated by ball milling into sub-micron particles, and their properties and adsorption performance toward TC were also characterized. For pristine biochars, TC adsorption was nonlinear and heterogeneous. Heterogeneity of biochars resulted in multiple sorption mechanisms, including H-bonding, π-π interaction, and pore filling. FBC300 and FBC600 had maximum sorption at pH 5–7. Electrostatic repulsion of positively charged biochar surfaces with TCH₃⁺ at pH < 3 or negatively charged biochar surfaces with TCH⁻ and/or TC²⁻ at pH > 7 was not favorable for TC removal. TC sorption decreased with increasing Na⁺ concentrations from 0 to 0.1 mol/L, and bivalent cations (Ca²⁺ and Mg²⁺) showed greater inhibiting effect relative to monovalent ones (Na⁺ and K⁺). The LMWOAs could combine with co-existing cations, thus reducing the inhibitory effect of cations and improving TC sorption. The ball milling caused remarkable size reduction of biochar particles, thus exposing more active surfaces to capture more TC molecules from water. This study provided low-cost and high-efficiency biochar absorbents to remove antibiotics from water and will benefit for understanding the relationship between TC sorption characteristics/mechanisms and biochar properties.
显示更多 [+] 显示较少 [-]