Ultra-fast enrichment and reduction of As(V)/Se(VI) on three dimensional graphene oxide sheets-oxidized carbon nanotubes hydrogels
2019
Liang, Jianjun | Ding, Zhe | Qin, Haoming | Li, Jing | Wang, Wei | Luo, Dongxia | Geng, Rongyue | Li, Ping | Fan, Qiaohui
The removals of arsenic and selenium pollutants are always urgent desires for the water security. In this study, both sorption and catalysis strategies were combined for the effective removals of As(V) and Se(VI) over magnetic graphene oxide sheets (GOs)-oxidized carbon nanotubes (OCNTs) hydrogels. The sorption behavior facilitated the operation of catalysis reactions, meanwhile, the catalytic reduction promoted the release of occupied sorption sites and then restarted a new sorption-catalysis cycle. The synergic effect of sorption and catalysis realized 258.2 mg g⁻¹ for As(V) enrichment capacity on MPG2T1, and ultra-fast sorption and catalysis equilibriums were identified within 9 min. In the case of Se(VI), a moderate enrichment performance was observed to be 46.2 mg g⁻¹. Similarly, the ultra-fast sorption and reduction of Se(VI) were realized within 2 min. In the competition experiments, only SO₄²⁻, SO₃²⁻, and HPO₄²⁻ showed interference for As(V) and Se(VI) removals. These results testified the superiority of the synergy effect of sorption and catalysis, and the feasibility of 3D magnetic GOs-OCNTs hydrogel in practical implementations.
显示更多 [+] 显示较少 [-]