Exploring use of a commercial passive sampler in a closed static chamber to measure ammonia volatilization
2022
Jaeman, Sabrina | Nurulhuda, Khairudin | Amin, Adibah Mohd | Sulaiman, Muhammad Firdaus | Man, Hasfalina Che
Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH₃ volatilization. The volatilized NH₃ represents monetary loss and contributes to increase in formation of PM₂.₅ in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH₃ is also a precursor to N₂O formation. Thus, it is important to monitor NH₃ volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH₃ absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH₃ sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH₃ was obtained for each of the trapping methods. Highest level of NH₃ was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH₃ under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
显示更多 [+] 显示较少 [-]