Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models
2018
Gollapalli, Muralidhar | Kota, Sri Harsha
Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH₄ and CO₂ emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH₄ and CO₂ are 68 and 92 mg/min/m², respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH₄ and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH₄ in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH₄ emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH₄ emission flux in this study. Assuming that this higher prediction of CH₄ levels observed in this study holds well for other landfills in this region, a new CH₄ emission inventory (Units: Tonnes/year), with a resolution of 0.1⁰ × 0.1⁰ has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models.
显示更多 [+] 显示较少 [-]