A double pre-selection method for natural background levels assessment in coastal groundwater bodies
2022
Parrone, D. | Frollini, E. | Masciale, R. | Melita, M. | Passarella, G. | Preziosi, E. | Ghergo, S.
To evaluate the chemical status of groundwater bodies (GWB) according to the European Groundwater Directive, EU Member States are required to take into account natural background levels (NBLs) where needed. Assessing the NBLs in coastal GWBs is complicated by seawater intrusion which can be amplified by groundwater withdrawals increasing the salinization of such groundwater systems. This paper proposes a new method for the NBLs assessment in coastal areas based on a double pre-selection (PS) with fixed/dynamic limits. A case study in the Apulia region, located in southeastern Italy, is proposed, where we investigated four adjacent GWBs which form the complex karst, fractured Murgia aquifer, hosted in the Jurassic-Cretaceous carbonate platform, bounded by two seas and sustained by saltwater of marine intrusion in the coastal areas. Data related to 139 monitoring stations (MSs) of the regional groundwater monitoring network were used. The first PS, “static”, based on a fixed limit of anthropogenic contamination markers (NO₃ and NH₄), allows for the elimination of MSs impacted by human activities. On these, the second PS, “dynamic”, based on the identification of Cl anomalous values, allows for the identification of additional MSs affected by saline contamination. The residual dataset of MSs was used for the definition of NBLs of Cl, SO₄, F and B. A statistical comparison with historical Cl observations finally allowed us to verify if the salinity of current groundwater is representative of pristine conditions. The calculated NBLs of salinity parameters are higher for the two coastal GWBs, with chloride values between 0.8 and 2 mg/L. Conversely, fluorides always show very low NBLs. The double PS approach seems more effective for NBLs calculation in coastal aquifers affected by saline contamination, where the use of a fixed Cl limit fails. It may respond to the international needs for a standardized procedure for NBL assessment.
显示更多 [+] 显示较少 [-]