Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India
2020
Jain, Srishti | Sharma, S.K. | Vijayan, En. | Mandal, T.K.
The present study attempts to explore and compare the seasonal variability in chemical composition and contributions of different sources of fine and coarse fractions of aerosols (PM₂.₅ and PM₁₀) in Delhi, India from January 2013 to December 2016. The annual average concentrations of PM₂.₅ and PM₁₀ were 131 ± 79 μg m⁻³ (range: 17–417 μg m⁻³) and 238 ± 106 μg m⁻³ (range: 34–537 μg m⁻³), respectively. PM₂.₅ and PM₁₀ samples were chemically characterized to assess their chemical components [i.e. organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSICs) and heavy and trace elements] and then used for estimation of enrichment factors (EFs) and applied positive matrix factorization (PMF5) model to evaluate their prominent sources on seasonal basis in Delhi. PMF identified eight major sources i.e. Secondary nitrate (SN), secondary sulphate (SS), vehicular emissions (VE), biomass burning (BB), soil dust (SD), fossil fuel combustion (FFC), sodium and magnesium salts (SMS) and industrial emissions (IE). Total carbon contributes ∼28% to the total PM₂.₅ concentration and 24% to the total PM₁₀ concentration and followed the similar seasonality pattern. SN and SS followed opposite seasonal pattern, where SN was higher during colder seasons while SS was greater during warm seasons. The seasonal differences in VE contributions were not very striking as it prevails evidently most of year. Emissions from BB is one of the major sources in Delhi with larger contribution during winter and post monsoon seasons due to stable meteorological conditions and aggrandized biomass burning (agriculture residue burning in and around the regions; mainly Punjab and Haryana) and domestic heating during the season. Conditional Bivariate Probability Function (CBPF) plots revealed that the maximum concentrations of PM₂.₅ and PM₁₀ were carried by north westerly winds (north-western Indo Gangetic Plains of India).
显示更多 [+] 显示较少 [-]