Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS
2020
Xu, Lina | Wang, Zhenyu | Zhao, Jian | Lin, Meiqi | Xing, Baoshan
The exposure risk of metal-based nanoparticles (NPs) to marine organisms and related food safety have attracted increasing attention, but the actual concentrations of these NPs in seawater and marine organisms are unknown. In this work, single particle inductively coupled plasma-mass spectrometry (spICP-MS) was used to quantify the concentrations and size distributions of NPs in different marine mollusks (oysters, mussels, scallops, clams, and ark shells) from an offshore aquaculture farm. Results showed that Ti, Cu, Zn, and Ag bearing NPs were detected in all the five mollusks with the mean sizes at 65.4–70.9, 72.2–89.6, 97.8–108.3, and 42.9–51.0 nm, respectively. The particle concentrations of Ti, Cu, Zn, and Ag bearing NPs in all mollusks (0.88–3.26 × 10⁷ particles/g fresh weight) were much higher than that in the seawater (0.46–0.79 × 10⁷ particles/mL), suggesting bio-accumulation of NPs. For all the five mollusks, Ag bearing NPs had the highest number-based bioconcentration factors (NBCFs) in all the tested NPs due to the smallest mean size of Ag bearing NPs in seawater (30.5 nm). In addition, the clams exhibited the lowest NBCFs of the four NPs than other mollusks. All four NPs were mainly accumulated in the gill and digestive gland, and could transfer to adductor muscle of all mollusks. Although all the four metals (Ti, Cu, Zn, Ag) in mollusks were safe for human consumption by the estimated daily intake (EDI) analysis, the risk of NPs remaining in the mollusks should be further considered when evaluating the toxicity of metals for human health. The findings could improve our understanding on the distribution and health risk of NPs in marine mollusks under offshore aquaculture.
显示更多 [+] 显示较少 [-]