Immobilization of Chromium in Tannery Sludge Using Iron-Based Nanoparticles and Nanobiocomposites
2015
Arthy, M. | Phanikumar, B. R.
This paper presents the efficacy of zero-valent iron nanoparticles (ZVINs), magnetic iron oxide nanoparticles (MINs), zero-valent iron nanoparticles/sugarcane bagasse (ZVIN-SB) composite and magnetic iron oxide nanoparticles/sugarcane bagasse (MIN-SB) composite in immobilizing chromium present in tannery sludge. The optimized values for the immobilization of chromium by the adsorbents were found to be 48 h, 100 g/kg and 7, respectively, for time, adsorbent dosage and pH. The maximum uptake capacity was found to be 429.75, 539.25, 587.25 and 625.8 mg/kg, respectively, for ZVIN, MIN, ZVIN-SB and MIN-SB. The desorption study of the unamended sludge and sludge amended by ZVIN, MIN, ZVIN-SB and MIN-SB was carried out with three different desorbing media (0.1 N HCL, DIW and 0.1 N NaOH). It was found that the cumulative concentration of leachate chromium was more in basic condition than in neutral and acidic conditions. In column studies, the concentration of leachate chromium attained 0 mg/L at 24, 15, 18 and 14 pore volumes, respectively, for the sludge amended by ZVIN, MIN, ZVIN-SB and MIN-SB. The experimental adsorption data fitted well with pseudo-first-order kinetics. The zero-order kinetics accurately predicted the experimental desorption capacity (q ₑ) of the sludge amended by ZVIN, MIN, ZVIN-SB and MIN-SB. The Fourier transform infrared spectroscopy (FTIR) analysis showed that the amine, carboxyl, iron compounds, etc. present in the adsorbents were the chief causes for the immobilization of chromium. The X-ray diffraction (XRD) analysis of the sludge showed the presence of trivalent chromium compounds at a higher concentration.
显示更多 [+] 显示较少 [-]