Exploring the photo-thermal conversion behavior and extinction coefficient of activated carbon nanofluids for direct absorption solar collector applications
2022
Kumar, Poongavanam Ganesh | Vigneswaran, Shunmugharajan | Meikandan, Megaraj | Sakthivadivel, Duraisamy | Salman, Mohammad | Thakur, Amrit Kumar | Sathyamurthy, Ravishankar | Kim, Sung Chul
This work aims to explore the optical and thermal conversion characteristics of activated carbon—solar glycol nanofluids with various volume fractions namely 0.2, 0.4, and 0.6%, respectively. Kigelia africana leaves were synthesized into porous activated carbon nanomaterials by using the high-temperature sintering process and the pyrolysis process in a muffle furnace. The experimental investigation was carried out with different nanofluid concentrations by using the solar simulator. Nanofluids were heated with the assistance of a solar simulator test system and the convection/conduction heat loss was decreased by using the glass as an insulating material around the test section. Prepared nanofluid with 0.6 vol% activated carbon augmented the thermal conductivity by 14.36% at 60°C. The maximum temperature difference of 10°C was attained at 0.6% volume concentrations of nanofluid as compared with base fluid (solar glycol). In addition, maximum receiver efficiency of 94.51% was attained at 0.6% volume fractions of activated carbon-based nanofluid compared with solar glycol thru a light radiation time of 600 s. Moreover, activated carbon–based nanofluid exhibited significantly higher absorption efficiency as the majority of the radiation was absorbed by the nanofluid. It is concluded that activated carbon-based nanofluids could be a suitable low-cost highly stable material for developing working fluid for direct absorbance solar collector–based applications.
显示更多 [+] 显示较少 [-]