Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco | LIttoral ENvironnement et Sociétés (LIENSs) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Percy FitzPatrick Institute ; University of Cape Town | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | European Project: 631203,EC:FP7:PEOPLE,FP7-PEOPLE-2013-CIG,ARCTOX(2014)
International audience
显示更多 [+] 显示较少 [-]英语. Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006e2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.
显示更多 [+] 显示较少 [-]