Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology
2019
Motamedimehr, Sh. | Gitipour, S.
Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical fluids as solvents. The present study has investigated the extraction of contaminated soil with Polycyclic Aromatic Hydrocarbons (PAHs) by means of batch supercritical water reactor, employing variables like pressure (100–300 bar), temperature (60–140 ◦C), residence time (0.5–3 hours), and base, acidic, and neutral pH values. In order optimize the process parameters, Response Surface Methodology (RSM) has been used. Results show that removal efficiency of PAHs is between 82%-100%, where the highest PAHs removal efficiency (100%) has been observed in Test No. 22, with a pressure of 300 bars, temperature of 500°C, acidic pH equal to 5, and duration of 3 hours. In addition, the lowest removal efficiency of these compounds (82%) has been obtained in Test No. 26, with a pressure of 300 bars, temperature of 350°C, base pH of 9, and duration of half an hour. According to the results from this study, it has become clear that residence time is the most important and most effective parameter for removing PAHs from contaminated soil. Afterwards, temperature and pH are most influential with pressure showing the least effect. Using supercritical water method in appropriate conditions can eliminate more than 99% of aromatic contamination.
显示更多 [+] 显示较少 [-]