Analysis of CO2 Mitigation Strategies for Iran’s Thermal Power Plants Using Modified STIRPAT Model
2024
Maleki, Shadi | Nazari Kudahi, Saeed
Thermal power plants are one of the main sources of CO2 emissions in the world. On the other hand, increasing carbon dioxide emissions as a greenhouse gas is led to global warming and climate change. In this study, CO2 mitigation strategies for Iran’s thermal power plants regarding Intended Nationally Determined Contributions submitted by Iran using modified STIRPAT model examines are presented. In the first step of this research, CO2 emissions from Iran’s power sector are predicted with respect to the parameters including, population, GDP, and electricity generation. In the second step of this research, CO2 mitigation strategies including, using the renewable sources and increasing energy saving as well as power generation efficiency during the years of 2020 to 2025 are analyzed using modified STIRPAT model to reduce carbon dioxide emissions in accordance with Iran’s INDCs. The prediction of carbon dioxide emissions by 2025 represents an increase of 26.5% in carbon dioxide emissions compared to 2017 while estimating carbon dioxide emissions in accordance with Iran’s INDCs allows a maximum increase of 21.4% compared to 2017. In order to reduce carbon dioxide emissions, the average efficiency of power plants by 2025 should be 1.542% higher than in 2017, or 3.086% of the energy savings should be implemented compared to total electricity generation output projected in 2025, or more than 36.22% increment of electricity generation output from renewable energy is expected compared to the projected level in 2025, or a combination of these three solutions.
显示更多 [+] 显示较少 [-]