Sensitive detection of pathological seeds of α-synuclein, tau and prion protein on solid surfaces
2024
Orrú, Christina | Groveman, Bradley | Hughson, Andrew | Barrio, Tomás | Isiofia, Kachi | Race, Brent | Ferreira, Natalia | Gambetti, Pierluigi | Schneider, David | Masujin, Kentaro | Miyazawa, Kohtaro | Ghetti, Bernardino | Zanusso, Gianluigi | Caughey, Byron | Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America | Interactions hôtes-agents pathogènes [Toulouse] (IHAP) ; Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America. | Animal Disease Research Unit, USDA-ARS, Pullman, Washington, United States of America. | National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan. | Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, United States of America. | Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
International audience
显示更多 [+] 显示较少 [-]英语. Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson’s and Alzheimer’s diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10 −6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer’s disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10 −5 –10 −8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10 −6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.
显示更多 [+] 显示较少 [-]