Identification of quantitative trait loci for relative water content and chlorophyll concentration traits in recombinant inbred lines of sunflower ([i]Helianthus annuus[/i] L.) under well-watered and water-stressed conditions
2013
Abdi, Nishtman, N. | Darvishzadeh, Reza, R. | Hatami Maleki, Hamid, H. | Haddadi, Parham, Haddadi | Sarrafi, Ahmad | Institut Jean-Pierre Bourgin (IJPB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
The goal of the present research work was to identify quantitative trait loci (QTLs) involved in the genetic variation of relative water content and chlorophyll concentration in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. 70 recombinant inbred lines (RILs) out of 123 from the cross PAC2 x RHA266 and their parental lines were evaluated in a rectangular 8 x 9 lattice design with two replications under well-watered and water-stressed conditions. High genetic variability and transgressive segregation was observed among RILs for evaluated traits in both water treatment conditions. QTLs were mapped using an updated high-density simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) linkage map. The map consisted of 210 SSR and 11 genes placed in 17 linkage groups. The total map length is 1,653.1 cM (centimorgan) with a mean density of 1 marker per 7.44 cM. Under well-watered state, 3 and 6 QTLs were identified for chlorophyll concentration and relative water content, respectively. In water-stressed condition 7 and 2 QTLs were identified. The percentage of phenotypic variance (R-2) explained by QTLs ranged from 0.39% to 52.48%. QTLs for chlorophyll concentration and relative water content on linkage group 10 and 16 were overlapped. Common QTLs for different traits in both water treatment conditions on linkage groups 10 seem to be more important as it gives a constitutive performance for the traits without being affected by water treatment.
显示更多 [+] 显示较少 [-]