Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest
2022
Goëau, Hervé | Lorieul, Titouan | Heuret, Patrick | Joly, Alexis | Bonnet, Pierre | Département Systèmes Biologiques (Cirad-BIOS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM) | Scientific Data Management (ZENITH) ; Centre Inria d'Université Côte d'Azur ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | ANR-10-LABX-0025,CEBA,CEnter of the study of Biodiversity in Amazonia(2010) | ANR-11-INBS-0004,E-RECOLNAT,Valorisation de 350 ans de collections d'histoire naturelle : une plateforme numérique(2011)
International audience
显示更多 [+] 显示较少 [-]英语. A better knowledge of tree vegetative growth phenology and its relationship to environmental variables is crucial to understanding forest growth dynamics and how climate change may affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern for most species. The humid tropics, on the other hand, have less seasonality and contain many more tree species, leading to a diversity of patterns that is still poorly known and understood. The work in this study aims to advance knowledge in this area, focusing specifically on herbarium scans, as herbariums offer the promise of tracking phenology over long periods of time. However, such a study requires a large number of shoots to be able to draw statistically relevant conclusions. We propose to investigate the extent to which the use of deep learning can help detect and type-classify these relatively rare vegetative structures in herbarium collections. Our results demonstrate the relevance of using herbarium data in vegetative phenology research as well as the potential of deep learning approaches for growing shoot detection.
显示更多 [+] 显示较少 [-]