Effects of hydropriming, halopriming, and hormopriming seed treatments on the subsequent salt stress tolerance of quinoa (Chenopodium quinoa Willd.) in Algeria
2024
Bahia Lallouche | Boubakr Hadj Kouider
Quinoa, a valuable halophyte, plays a crucial role in ensuring food and nutritional security under climate change. However, high salinity levels can hinder seed germination and subsequent plant growth. The current study aimed to enhance the salinity tolerance of pre-optimized quinoa seeds through various priming techniques: hydropriming (distilled water, 25 °C, 12 hours), halopriming (75 mM CaCl₂, KNO₃, and MgSO₄ at 25 °C for 12 hours), and hormopriming with gibberellic acid (GA₃ 25 mM, 25 °C, 12 hours). The seed germination parameters: germination percentage, relative salt tolerance and salt tolerance index, as well as growth parameters of seedlings as plant height, leaf number, plant fresh weight, root length, root fresh weight, plant height/root length ratio, plant height stress tolerance index, root length stress tolerance index, and chlorophyll content, were evaluated in Giza 02 and Q102 Chenopodium quinoa varieties. Halopriming with KNO₃, hormopriming with GA₃, followed by halopriming with MgSO₄, effectively mitigated the negative impacts of salinity. This priming approach shows promise for enhancing quinoa crop resilience in saline soils and could serve as a model for other salt-sensitive crops.
显示更多 [+] 显示较少 [-]