FloodProBE Project. Combining information for urban levee assessment | Projet FloodProBE. Combiner l'information en vue du diagnostic des digues urbaines
2013
van Der Meij, R. | Tourment, R. | Maurel, P. | Morris, M. | DELTARES NLD ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Ouvrages hydrauliques et hydrologie (UR OHAX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | SAMUI GBR ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Européen (appel d'offres international) | irstea | UE/FP7
[Departement_IRSTEA]Eaux [TR1_IRSTEA]RIVAGE
显示更多 [+] 显示较少 [-]英语. Work package 3.3 shows how to integrate gathered data and the mathematical models presented in the other sections of this FloodProBE project work package 3. It provides guidance on how to use information that is not incorporated in the traditional assessment framework. The added value of using all relevant data is made explicit for both the asset manager and the consulting engineer. This document shows how data is used to assess flood defence performance and how data might be analysed in the future to provide more reliable performance assessments. The work presents different examples of assessment methods and how performance assessment can be improved using the different approaches. The accuracy of a traditional assessment cannot be improved after a certain point as some aspects are not taken into account inside the current frameworks. Initial assessments can be improved if measurements, observations, expert knowledge or other data is combined with the traditional assessment method. Incorporating these additional aspects is not always straightforward as our traditional assessment tools are not necessarily designed to deal with different data types. This report presents a number of data combination techniques from both a theoretical and a practical point of view and gives guidance on improving the assessment through adding additional data sources. Some improvements can be implemented directly without much effort (cost); others need some research and development in order to be ready for use in practice. A theoretical approach to improve the assessment results is applied in several cases in this report. These cases show that it is quite possible to combine fundamentally different data types for an assessment and thereby improve the quality of the assessment. In order for these changes to take place in practice, both engineers and asset managers need to change the way they think about data. Data needs to be gathered and maintained in a structured manner (GIS) and the assessment methods must not ignore important data because it does not suit a particular model. This report gives guidance on how to manage the data and how to improve the assessment models.
显示更多 [+] 显示较少 [-]