A general method to filter out defective spatial observations from yield mapping datasets
2018
Leroux, Corentin | Jones, Hazaël | Clenet, A. | Dreux, B. | Becu, M. | Tisseyre, Bruno | SMAG MONTPELLIER FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | DEFISOL EVREUX FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]INSPIRE [ADD1_IRSTEA]Équiper l'agriculture
显示更多 [+] 显示较少 [-]International audience
显示更多 [+] 显示较少 [-]英语. Yield maps are recognized as a valuable tool with regard to managing upcoming crop production but can contain a large amount of defective data that might result in misleading decisions. These anomalies must be removed before further processing to ensure the quality of future decisions. This paper proposes a new holistic methodology to filter out defective observations likely to be present in yield datasets. The notion of spatial neighbourhood has been refined to embrace the specific characteristics of such on-the-go vehicle based datasets. Observations are compared with their newly-defined spatial neighbourhood and the most abnormal ones are classified as defective observations based on a density-based clustering algorithm. The approach was conceived to be as non-parametric and automated as far as possible to pre-process a growing number of datasets without supervision. The proposed approach showed promising results on real yield datasets with the detection of well-known sources of errors such as filling and emptying times, speed changes and non-fully used cutting bar.
显示更多 [+] 显示较少 [-]