Research on Remote Sensing Monitoring of Key Indicators of Corn Growth Based on Double Red Edges
2025
Ying Yin | Chunling Chen | Zhuo Wang | Jie Chang | Sien Guo | Wanning Li | Hao Han | Yuanji Cai | Ziyi Feng
The variation in crop growth provides critical insights for yield estimation, crop health diagnosis, precision field management, and variable-rate fertilization. This study constructs key monitoring indicators (KMIs) for corn growth based on satellite remote sensing data, along with inversion models for these growth indicators. Initially, the leaf area index (LAI) and plant height were integrated into the KMI by calculating their respective weights using the entropy weight method. Eight vegetation indices derived from Sentinel-2A satellite remote sensing data were then selected: the Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI), Soil-Adjusted Vegetation Index (SAVI), Red-Edge Inflection Point (REIP), Inverted Red-Edge Chlorophyll Index (IRECI), Pigment Specific Simple Ratio (PSSRa), Terrestrial Chlorophyll Index (MTCI), and Modified Chlorophyll Absorption Ratio Index (MCARI). A comparative analysis was conducted to assess the correlation of these indices in estimating corn plant height and LAI. Through recursive feature elimination, the most highly correlated indices, REIP and IRECI, were selected as the optimal dual red-edge vegetation indices. A deep neural network (DNN) model was established for estimating corn plant height, achieving optimal performance with an R<sup>2</sup> of 0.978 and a root mean square error (RMSE) of 2.709. For LAI estimation, a DNN model optimized using particle swarm optimization (PSO) was developed, yielding an R<sup>2</sup> of 0.931 and an RMSE of 0.130. KMI enables farmers and agronomists to monitor crop growth more accurately and in real-time. Finally, this study calculated the KMI by integrating the inversion results for plant height and LAI, providing an effective framework for crop growth assessment using satellite remote sensing data. This successfully enables remote sensing-based growth monitoring for the 2023 experimental field in Haicheng, making the precise monitoring and management of crop growth possible.
显示更多 [+] 显示较少 [-]