Evaluation of a Polarimetric Contrast Enhancement Technique as Preprocessing Step for Vessel Detection in SAR Images: Comparison of Frequency Bands and Polarimetric Modes
2025
Alejandro Mestre-Quereda | Juan M. Lopez-Sanchez
Spaceborne Synthetic Aperture Radar (SAR) is extensively used in maritime surveillance due to its ability to monitor vast oceanic regions regardless of weather conditions and sun illumination. Over the years, numerous automatic ship detection algorithms have been developed, utilizing either single-polarimetric data (i.e., intensity) or leveraging additional information provided by polarimetric sensors. One of the main challenges in automatic ship detection using SAR is that sea clutter, influenced primarily by sea conditions and image acquisition angles, can exhibit strong backscatter, reducing the signal-to-clutter ratio (that is, the contrast) between ships and their surroundings. This leads inevitably to detection errors, which can be either false alarms or miss-detections. A potential solution to this issue is to develop methodologies that suppress backscattered signals from the sea while preserving the radar returns from ships. In this work, we analyse a contrast enhancement method which is designed to suppress unwanted sea clutter while preserving signals from potential ships. A key advantage of this method is that it is fully analytical, eliminating the need for numerical optimization and enabling the rapid generation of an enhanced image better suited for automatic detection. This technique, based on polarimetric orthogonality, was originally formulated for quad-polarimetric data, and here the adaptation for dual-polarimetric SAR images is also detailed. To demonstrate its effectiveness, a comprehensive set of results using both quad- and dual-polarimetric images acquired by various sensors operating at L-, C-, and X-band is presented.
显示更多 [+] 显示较少 [-]