The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants
2025
Conesa, Juan A. | Mortes Esquer, Jonathan | Conesa, Juan A. | Mortes Esquer, Jonathan | Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos | Residuos, Energía, Medio Ambiente y Nanotecnología (REMAN) | Human Robotics (HURO)
The aviation industry significantly contributes to global greenhouse gas (GHG) emissions, accounting for approximately 2–3% of total annual CO2 emissions, with high-altitude operations amplifying radiative forcing effects. This study quantitatively examines aviation’s contributions to global pollution compared to other transportation sectors, such as road and maritime, highlighting the substantial challenges in mitigating its environmental footprint. We focus on emissions of organic compounds, including polycyclic aromatic compounds and dioxins, and analyze key pollutants such as CO2, NOX, and ultrafine particles alongside the sector’s indirect effects. Our estimation indicates that dioxin emissions from commercial flights are negligible, at only 0.76 g annually; however, the sector’s broader impact on climate and air quality is significant. The analysis also evaluates current mitigation strategies, including the adoption of sustainable aviation fuels (SAFs), international initiatives like CORSIA, and advancements in aircraft technologies and operational efficiency. Despite these efforts, the projected growth in air traffic, estimated to increase annually by 5% over the next decade, underscores the urgent need for accelerated innovation and robust policy frameworks to achieve sustainable aviation. These findings emphasize the necessity of addressing aviation’s unique environmental challenges through international cooperation, technological advancements, and targeted climate actions.
显示更多 [+] 显示较少 [-]