Machine learning algorithms identified relevant SNPs for milk fat content in cattle
2021
Ríos, Pablo J. | Raschia, Maria Agustina | Maizon, Daniel Omar | Demitrio, Daniel Arturo | Poli, Mario Andres
In recent years, machine learning methods have been shown to be efficient in identifying a subset of single nucleotide polymorphisms (SNP) underlying a trait of interest. The aim of this study was the construction of predictive models using machine learning algorithms, for the identification of loci that best explain the variance in milk fat production of dairy cattle. Further objectives involve determining the genes flanking relevant SNPs and retrieving the pathways, biological processes, or molecular functions overrepresented by them. Fat production values adjusted for fixed effects (FPadj) and estimated breeding values for milk fat production (EBVFP) were used as phenotypes and SNPs as predictor variables. The models constructed for EBVFP performed better and yield considerably less relevant SNPs than models for FPadj. Among the genes flanking relevant SNPs, signaling transduction pathways and gated channel activities were detected as overrepresented. The loci obtained for EBVFP matched better with previously reported relevant loci for milk fat content than those obtained for FPadj. Based on the better performance showed by the models trained for EBVFP and their agreement with previous reported results for the trait studied, we conclude that the relationship among individuals should be accounted for in the phenotype used.
显示更多 [+] 显示较少 [-]Instituto de Genética
显示更多 [+] 显示较少 [-]Fil: Ríos, Pablo J. Universidad de Buenos Aires; Argentina
显示更多 [+] 显示较少 [-]Fil: Ríos, Pablo J. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
显示更多 [+] 显示较少 [-]Fil: Raschia, Maria Agustina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
显示更多 [+] 显示较少 [-]Fil: Raschia, Maria Agustina. Universidad Nacional de La Plata. Facultad de Ciencias Médicas; Argentina
显示更多 [+] 显示较少 [-]Fil: Maizon, Daniel Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina
显示更多 [+] 显示较少 [-]Fil: Maizon, Daniel Omar. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina
显示更多 [+] 显示较少 [-]Fil: Demitrio, Daniel Arturo. Instituto Nacional de Tecnología Agropecuaria (INTA). Dirección General de Sistemas de Información, Comunicación y Procesos. Gerencia de Informática y Gestión de la Información; Argentina
显示更多 [+] 显示较少 [-]Fil: Demitrio, Daniel Arturo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
显示更多 [+] 显示较少 [-]Fil: Poli, Mario Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
显示更多 [+] 显示较少 [-]Fil: Poli, Mario Andres. Universidad del Salvador. Facultad de Ciencias Agrarias y Veterinaria; Argentina
显示更多 [+] 显示较少 [-]