Process Parameters and Heat-Treatment Optimization for Improving Microstructural and Mechanical Properties of AA6082-T651 Deposit on EN14B Plate Using Friction Surfacing Technique
2025
Hemlata Jangid | Nirmal K. Singh | Amlan Kar
Friction surfacing (FS) is increasingly recognized as an advanced technique for coating similar and dissimilar materials, enabling superior joint quality through plastic deformation and grain refinement. This study investigates the deposition of AA6082-T651 alloy on a medium-carbon steel EN14B substrate using FS, with process parameters optimized, and the effect of axial load, rotational speed, and traverse speed on coating integrity. The optimal sample was subjected to heat treatment (HT) at 550 °:C for 24, 36, and 48 h to further enhance mechanical properties. Comprehensive microstructural and mechanical analyses were performed on both heat-treated and non-heat-treated samples using optical microscopy (OM), field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), microhardness testing, and micro-tensile techniques. The optimized sample was processed with a 6 kN axial load, a rotational speed of 2700 rpm, and a traverse speed of 400 mm/min, and demonstrated superior bond quality and enhanced mechanical properties. The highest interfacial hardness values, 138 HV0.1 were achieved for the sample annealed for 48 h, under an axial load of 6 kN. Annealing for 48 h significantly improved atomic bonding at the aluminum&ndash:steel interface, confirmed by the formation of Fe3Al intermetallic compounds detected via FESEM-EDS and XRD. These compounds were the primary reason for the enhancement in the mechanical properties of the FS deposit. Furthermore, the interrelationship between process and thermal parameters revealed that a peak temperature of 422 °:C, heat input of 1.1 kJ/mm, and an axial load of 6 kN are critical for achieving optimal mechanical interlocking and superior coating quality. The findings highlight that optimized FS parameters and post-heat treatment are critical in achieving high-quality, durable coatings, with improved interfacial bonding and hardness, making the process suitable for structural applications.
显示更多 [+] 显示较少 [-]