Life Cycle Assessment of Tinplate Aerosol Cans: Evaluating the Role of Photovoltaic Energy and Green Hydrogen in Environmental Impact Reduction
2025
Miguel S. Teixeira | Teresa M. Mata | Ana Lourenço | Filipa Oliveira | José Oliveira | António A. Martins
This study assesses the environmental impacts of producing 1000 tinplate aerosol cans at a Portuguese packaging company using the life cycle assessment (LCA) methodology. The inventory analysis is based on real industrial data collected from the company for foreground processes, complemented with the literature data for background processes. Two energy scenarios are compared: the current production setup, which relies on electricity from the Portuguese grid and 100% natural gas, and an optimized renewable energy scenario powered entirely by photovoltaic electricity, with thermal energy supplied by a mix of 20% green hydrogen and 80% natural gas. The ReCiPe 2016 Midpoint (E) method was applied to assess 18 environmental impact categories. For the production of 1000 cans, the associated impacts are as follows: 287.11 kg CO2 eq for GWP, 1.01 ×: 10&minus:4 kg CFC-11 eq for ODP, 16.52 kBq Co-60 eq for IRP, 51.59 kg 1,4-DCB for FETP, 0.69 kg PM2.5 eq for PMFP, 77.20 kg oil eq for FFP, and 2.57 m3 for WCP. Tinplate exhibits the highest environmental burden across most impact categories, particularly in HTPc (96%) and SOP (98%). Offset aluminum printing plates have the greatest impact on FETP (33%), while wood pallets significantly contribute to LOP (81%). The renewable energy scenario resulted in significant reductions in IRP (60.9%), LOP (50.3%), ODP (39.8%), FFP (26.1%), and GWP (24.4%). However, it also led to notable increases in other impact categories, including FETP (135.3%), METP (130.8%), FEP (128.8%), MEP (114.3%), HTPnc (112.0%), SOP (107.8%), TETP (103.4%), and WCP (75.2%), primarily due to green hydrogen production and photovoltaic systems. Among the renewable options, wind electricity stands out as the most environmentally favorable choice for hydrogen production, outperforming both photovoltaic and hydroelectricity.
显示更多 [+] 显示较少 [-]