Assessing Whole-Body Vibrations in an Agricultural Tractor Based on Selected Operational Parameters: A Machine Learning-Based Approach
2025
Željko Barač | Mislav Jurić | Ivan Plaščak | Tomislav Jurić | Monika Marković
This paper presents whole-body vibration prediction in an agricultural tractor based on selected operational parameters using machine learning. Experiments were performed using a Landini Powerfarm 100 model tractor on farmlands and service roads located at the Osijek School of Agriculture and Veterinary Medicine. The methodology adhered to the HRN ISO 5008 protocols for establishing test surfaces, including a smooth 100 m track and a rugged 35 m track. Whole-body vibrational exposure assessments were carried out in alignment with the HRN ISO 2631-1 and HRN ISO 2631-4 guidelines, which outline procedures for evaluating mechanical oscillations in occupational settings. The obtained whole-body vibration data were divided into three datasets (one for each axis) and processed using linear regression as a baseline and compared against three machine learning models (gradient boosting regressor: support vector machine regressor: multi-layer perception). The most accurate machine learning model according to the R2 metric was the gradient boosting regressor for the x-axis (R2: 0.98) and the y-axis (R2: 0.98), and for the z-axis (R2: 0.95), the most accurate machine learning model was the SVM regressor. The application of machine learning methods indicates that machine learning models can be used to predict whole-body vibrations more accurately than linear regression.
显示更多 [+] 显示较少 [-]