Non-Contact Detection of Wine Grape Load Volume in Hopper During Mechanical Harvesting
2025
Haowei Liu | Xiu Wang | Jian Song | Mingzhou Chen | Cuiling Li | Changyuan Zhai
Issues of poor real-time performance and low accuracy in the detection of load volume in the hopper during the mechanized harvesting of wine grapes are addressed in this study through the development of a proposed volume detection method based on ultrasonic sensors. First, the ultrasonic sensor beamwidth and detection height were determined through calibration tests. Next, a test bench was used to explore the influence of the number of ultrasonic sensors and conveying speed on the detected grape pile height. Data-based regression and hopper configuration-based geometric models correlating grape load volume with detected pile height were subsequently constructed: their accuracies were compared using test bench experiments to identify the optimal detection scheme. The regression model was more accurate than the geometric model under the considered conveying speeds with a maximum relative error of 8.0% for the former. Finally, field tests determined that the average grape load volume detection error during actual harvesting was 14.4%. Therefore, this study provides an effective solution for the detection of grape load volume in the hopper during mechanized harvesting and establishes a theoretical basis for the development of intelligent grape harvesting methods.
显示更多 [+] 显示较少 [-]