Quorum Sensing in Chromobacterium subtsugae ATCC 31532 (Formerly Chromobacterium violaceum ATCC 31532): Transcriptomic and Genomic Analyses
2025
Dmitry G. Deryabin | Ksenia S. Inchagova | Eugenia R. Nikonorova | Ilshat F. Karimov | Galimzhan K. Duskaev
Chromobacterium spp. use a density-dependent cell-to-cell communication mechanism (quorum sensing, QS) to control various traits, including the pigment violacein biosynthesis. Recently, one of the type strains of this genus, previously deposited in the American Type Culture Collection under accession number C. violaceum 31532, was reclassified as C. subtsugae, making the QS data obtained for the first species irrelevant to the second. The goal of this study is to conduct transcriptomic and genomic analyses of the C. subtsugae ATCC 31532 (formerly C. violaceum ATCC 31532) strain to identify density-dependent regulated genes and the mechanisms of their QS control. Whole transcriptome dataset analysis comparing QS-negative mid-log phase and QS-positive early stationary phase samples revealed 35 down-regulated and 261 up-regulated genes, including 44 genes that increased transcription activity the most (log2 (fold change) >: 4.0). In addition to the violacein biosynthesis, QS-controlled traits in C. subtsugae ATCC 31532 included the following: (i) cdeAB-oprM efflux pump: (ii) RND efflux transporter: (iii) chuPRSTUV iron acquisition system: (iv) polyamine transport system: (v) carbohydrate (semialdehydes) metabolic pathways: (vi) SAM/SPASM maturase system XYE (predicted): (vii) prophage proteins: and (viii) fucose-binding lectin II. Subsequent screening of the promoter regions of the up-regulated genes and operons in most cases showed the presence of CsuR AHL-receptor/transcriptional regulator binding sites with 56.25&ndash:68.75% similarity to the ideal 16-base-pair palindrome 5&prime:-CTGTCCGATAGGACAG-3&prime: sequence, supporting the concept of QS control in C. subtsugae ATCC 31532 by the csuI-csuR gene pair. Notably, several transcriptional regulators (MarR, TetR/AcrR, HU family DNA-binding protein, helix-turn-helix domain-containing protein) were found to be under QS control. Based on these data, a hierarchical QS regulatory network in C. subtsugae ATCC 31532 was hypothesized that provides direct control of the target genes via a canonical autoinduction mechanism and further dissemination of the effect via the activity of QS-controlled transcriptional regulators.
显示更多 [+] 显示较少 [-]