Enhancing the Detection and Identification Sensitivity of Organophosphorus Pesticide-Related Phenols via Derivatization and LC-ESI-MS/MS: A Straightforward Approach to Identify the Specific Pesticide Involved in Exposure
2025
Avi Weissberg | Tamar Shamai Yamin | Avital Shifrovitch | Adi Tzadok | Merav Blanca | Moran Madmon
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, since these metabolites/hydrolysis products can result from the metabolism or breakdown of several organophosphorus pesticide families, they serve as nonspecific biomarkers and do not indicate the specific pesticide involved in exposure. In an earlier study, chemical derivatization using N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was described to improve the signal intensity of numerous organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) analysis. In the present study, CAX-B was employed to derivatize a set of seven phenolic compounds corresponding to the complementary portion of OP pesticides. The derivatization process using CAX-B was performed in acetonitrile with potassium carbonate at 50 °:C for 30 min. LC-Orbitrap-ESI-MS/MS was used to analyze the resulting phenol derivatives and their fragmentation patterns were studied. Notably, the derivatized phenols were markedly more sensitive than the underivatized phenols when LC-ESI-MS/MS was used in MRM technique, without being affected by the sample matrix (soil or plant extracts). This derivatization technique aids in identifying OP pesticides, offers insights into their subfamily, and pinpoints a specific compound through the analysis of corresponding phenol derivative.
显示更多 [+] 显示较少 [-]