Optimal Process Control for Rotor Speed Recovery and Secondary Frequency Drop Mitigation in Wind Turbine Frequency Regulation
2025
Liqing Yang | Zhishuai Hu | Zhenzhou Zhao | Yongfeng Ren
Driven by the demand for low-carbon and sustainable development, power systems are increasingly transitioning toward higher proportions of renewable energy and power-electronic interfaces, leading to a growing requirement for wind turbines to provide inertia support and frequency regulation (FR). Wind turbine kinetic energy-based FR inherently involves a trade-off between rotor speed recovery and grid stability: aggressive acceleration exacerbates the secondary frequency drop (SFD), while suppressing SFD prolongs rotor speed recovery. This study aims to resolve this dynamic coupling conflict and optimize the rotor speed recovery process by employing a segmented rotor speed recovery strategy. Firstly, a detailed wind farm-integrated frequency response model is developed. Leveraging its identified speed recovery dynamics, a five-dimensional rotor speed recovery evaluation framework is established. Subsequently, guided by this evaluation framework, a segmented rotor speed recovery control strategy is designed. Finally, three validation scenarios&mdash:a single wind turbine, 10% wind power penetration, and 30% wind power penetration&mdash:are constructed to evaluate the proposed strategy. Comparative analysis demonstrates that the proposed segmented rotor speed recovery strategy reduces aerodynamic power recovery time by 28.5% and power disturbance by 47.3% in an operational scenario with 30% wind power penetration, effectively achieving synergistic coordination of recovery acceleration and SFD suppression.
显示更多 [+] 显示较少 [-]