Regional Wave Spectra Prediction Method Based on Deep Learning
2025
Yuning Liu | Rui Li | Wei Hu | Peng Ren | Chao Xu
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·:s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model&rsquo:s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling.
显示更多 [+] 显示较少 [-]