Multi-Criteria Analysis of a Potential Expansion of Protected Agriculture in Imbabura, Ecuador
2025
Luis Marcelo Albuja-Illescas | Oscar Hernando Eraso Terán | Paúl Arias-Muñoz | Telmo-Fernando Basantes-Vizcaíno | Rafael Jiménez-Lao | María Teresa Lao
The increasing global demand for food, combined with rising climate extremes, is driving agricultural expansion—often without sufficient consideration for sustainability. Greenhouse agriculture presents a promising solution to address the dual challenges of food security and climate change mitigation. This study models potential scenarios for the expansion of greenhouse agriculture in Imbabura Province, Ecuador, while adhering to sustainability criteria. Two widely used methods were compared: the Analytical Hierarchy Process (AHP) integrated with Geographic Information Systems (GIS) and the Maximum Entropy (MaxEnt) model. The GIS-AHP method relies on expert-defined weights, whereas the MaxEnt model utilizes the probabilistic distribution of presence-only data, enabling a complementary evaluation of both subjective and data-driven approaches. Both models incorporated various factors, including topographic, climatic, hydrological, ecological, infrastructural, agricultural, and soil-related variables. The results classified the territory into five levels of suitability for greenhouse expansion. The GIS-AHP model identified 20,761.64 hectares as highly suitable, while the MaxEnt model identified only 5618.15 hectares. This discrepancy highlights the differing influences of various factors: In the GIS-AHP, land cover/use, irrigation availability, and proximity to existing greenhouses were the most influential. In contrast, in the MaxEnt model, proximity to greenhouses was the dominant factor. These findings not only provide a spatially explicit foundation for sustainable territorial planning but also contribute methodologically by integrating both data-driven and expert-driven approaches. This supports evidence-based policy-making in fragile Andean ecosystems.
显示更多 [+] 显示较少 [-]