Ventilation Modeling of a Hen House with Outdoor Access
2025
Hojae Yi | Eileen Fabian-Wheeler | Michael Lee Hile | Angela Nguyen | John Michael Cimbala
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor environment, including properly planned ventilation. Moreover, complaints exist that hens do not use the holes to access the outdoor environment due to the strong incoming airflow through the outdoor access, as they behave as uncontrolled air inlets in a negative pressure ventilation system. As the egg industry transitions to cage-free systems, there is an urgent need for validated computational fluid dynamics (CFD) models to optimize ventilation strategies that balance animal welfare, environmental control, and production efficiency. We developed and validated CFD models of a cage-free hen house with outdoor access by specifying real-world conditions, including two exhaust fans, sidewall ventilation inlets, wire-meshed pens, outdoor access, and plenum inlets. The simulations of four ventilation scenarios predict the measured air flow velocity with an error of less than 50% for three of the scenarios, and the simulations predict temperature with an error of less than 6% for all scenarios. Plenum-based systems outperformed sidewall systems by up to 136.3 air changes per hour, while positive pressure ventilation effectively mitigated disruptions to outdoor access. We expect that knowledge of improved ventilation strategy will help the egg industry improve the welfare of hens cost-effectively.
显示更多 [+] 显示较少 [-]