Extremal-Aware Deep Numerical Reinforcement Learning Fusion for Marine Tidal Prediction
2025
Xiaodao Chen | Gongze Zheng | Yuewei Wang
In the context of global climate change and accelerated urbanization, coastal cities face severe threats from storm surges, and accurately predicting coastal water level changes during storm surges has become a core technological demand for disaster prevention and reduction. Storm surges are caused by atmospheric pressure and wind conditions, and their destructive power is closely related to the morphology of the coastline. Traditional tide level prediction models often face difficulties in boundary condition parameterization. Tide level changes result from the combined effect of various complex processes. In past prediction studies, harmonic analysis and numerical simulations have dominated, each with their own limitations. Although machine learning applications in tide prediction have garnered attention, issues such as data inconsistency or missing data still exist. The physical&ndash:data fusion approach aims to overcome the limitations of single methods but still faces some challenges. This paper proposes a Deep-Numerical-Reinforcement learning fusion prediction model (DNR), which adopts ensemble learning. First, deep learning models and the numerical model Finite-Volume Coastal Ocean Model (FVCOM) are used to predict tide levels at different tide stations, and then a fusion approach based on the improved reinforcement learning model DDPG_dual is applied for model assimilation. This reinforcement learning fusion model includes a module specifically designed to handle tide extreme points. In the case of the Typhoon Mangkhut storm surge, the DNR model achieved the best results for tide level predictions at six tide stations in the South China Sea.
显示更多 [+] 显示较少 [-]