Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation
2025
Marin Ugrina | Ivona Nuić | Jelena Milojković
This study evaluates and compares the sorption performance of natural zeolite (NZ) and Fe(III)-modified zeolite (FeZ) in removing Cu(II) ions from aqueous solutions, with the goal of assessing their potential for environmental remediation. NZ was modified with Fe(NO3)3, NaOH and NaNO3 solutions to improve its sorption properties. The modification led to a slight decrease in crystallinity (XRD), increase in pore volume (BET), functional groups (FTIR) and negative surface charge (zeta potential), thereby improving the affinity of FeZ towards Cu(II). Batch sorption experiments were conducted to optimize key parameters including pH, solid/liquid ratio (S/L), contact time, and initial Cu(II) concentration. The pHo and S/L ratio were identified as key factors significantly influencing Cu(II) sorption on both zeolites, with a particularly pronounced effect observed for FeZ. The optimal conditions determined were pHo = 3&ndash:5 for NZ, pHo = 3 for FeZ, S/L = 10 g/L and a contact time of 600 min. Experimental results confirmed that FeZ has almost twice the sorption capacity for Cu(II) compared to NZ (0.271 mmol/g vs. 0.156 mmol/g), as further supported by elemental analysis, SEM-EDS and mapping analysis of saturated samples. The sorption of Cu(II) followed a mechanism of physical nature driven by ion exchange, dominated by intraparticle diffusion as the rate-controlling step. Leaching of copper-saturated zeolites according to the standard leaching method, DIN 38414 S4, demonstrated the ability of both zeolites to fully retain Cu(II) within their structure over a wide pH range, 4.01 &le: pHo &le: 10.06. These findings highlight the superior performance of FeZ and its potential as an effective material for the remediation of copper-contaminated environments.
显示更多 [+] 显示较少 [-]