Identification of Candidate Genes Related to the Husk Papillae in Foxtail Millet (Setaria italica (L.) P. Beauv)
2025
Meixia Tan | Yang Yang | Zhe Chen | Xiangyuan Gong | Fangfang Ma | Ming Duan | Lidong Wang | Yuanhuai Han
Efficient and fast water uptake by seeds, facilitated by optimal soil moisture, plays a critical role in timely germination and early seedling vigor for foxtail millet production in arid and semi-arid regions. The husk, as a unique structure through which the seed contacts the soil, plays an important role in water uptake and germination. Many foxtail millet germplasm accessions have papillae on the epidermis of their husks, yet the role of this trait in water uptake and germination, as well as the genetic basis and regulatory mechanism related to this trait, remain unknown. In this study, we demonstrated that the water uptake by the seeds from accessions with papillae was significantly higher than that of accessions without papillae two hours and four hours after sowing during a 10 h experiment, resulting in faster germination. Analysis of segregating ratios from two F2 populations derived from crossing between accessions with and without papillae indicated that husk papilla density was of monogenic dominance. Bulked Segregant Analysis Sequencing (BSA-Seq) showed that candidate regions on chromosome 5 were significantly associated with husk papilla density. The mapped region overlapped by the two BSA populations for papilla density included 72 genes. In combination with the expression profiles of these genes, five candidate genes were identified, encoding aquaporins, fructose transporter, and glycoside hydrolase. This study elucidated the role of husk papillae in enhancing water uptake and germination in foxtail millet, provided genetic insights into the trait, and laid the foundation for further study on the mechanism of husk papilla differentiation.
显示更多 [+] 显示较少 [-]