Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania)
2025
Alina Bărbulescu | Cristian Ștefan Dumitriu
Understanding long-term precipitation variability is essential for assessing the climate’s impact on sensitive ecosystems, particularly in regions of high environmental value, such as the Danube Delta Biosphere Reserve (DDBR). This study examines the temporal dynamics of monthly precipitation in the Danube Delta, Romania, spanning the period from 1965 to 2019. Three approaches were used to analyze climatic variability: Change Point detection (CPD) to identify shifts in precipitation regimes, the De Martonne Index (<i>I<sub>M</sub></i>) to assess aridity trends, and the Standardized Precipitation Index (SPI) to evaluate drought conditions across annual and monthly scales. Using robust monthly precipitation and temperature datasets from the Sulina meteorological station, CPD analysis revealed statistically significant structural breaks in precipitation trends, suggesting periods of altered climate behavior likely associated with broader regional or global climate changes. <i>I<sub>M</sub></i> values indicated mostly hyper-aridity and aridity at monthly and annual scales, respectively. No monotonic trend was found in this index during the analyzed segments, as emphasized by the Mann–Kendall (MK) test. SPI values provided further evidence of variability in the precipitation regime, highlighting a transition toward more extreme hydrological conditions in the region. The combined use of these indices offers a comprehensive view of the evolution of climatic conditions in the Danube Delta. The findings underscore the growing vulnerability of this unique wetland ecosystem to climatic variability, supporting the need for adaptive water management strategies in the face of anticipated future changes.
显示更多 [+] 显示较少 [-]