细化搜索
结果 61-70 的 657
Studying the activity of neuropeptides and other regulators of the excretory system in the adult mosquito 全文
2021
Lajevardi, Aryan | Sajadi, Farwa | Donini, Andrew | Paluzzi, Jean-Paul V.
Studies of insect physiology, particularly in those species that are vectors of pathogens causing disease in humans and other vertebrates, provide the foundation to develop novel strategies for pest control. Here, a series of methods are described that are routinely utilized to determine the functional roles of neuropeptides and other neuronal factors (i.e., biogenic amines) on the excretory system of the mosquito, Aedes aegypti. The Malpighian tubules (MTs), responsible for primary urine formation, can continue functioning for hours when removed from the mosquito, allowing for fluid secretion measurements following hormone treatments. As such, the Ramsay assay is a useful technique to measure secretion rates from isolated MTs. Ion-selective microelectrodes (ISME) can sequentially be used to measure ion concentrations (i.e., Na+ and K+) in the secreted fluid. This assay allows for the measurement of several MTs at a given time, determining the effects of various hormones and drugs. The Scanning Ion-selective Electrode Technique uses ISME to measure voltage representative of ionic activity in the unstirred layer adjacent to the surface of ion transporting organs to determine transepithelial transport of ions in near real time. This method can be used to understand the role of hormones and other regulators on ion absorption or secretion across epithelia. Hindgut contraction assays are also a useful tool to characterize myoactive neuropeptides, that may enhance or reduce the ability of this organ to remove excess fluid and waste. Collectively, these methods provide insight into how the excretory system is regulated in adult mosquitoes. This is important because functional coordination of the excretory organs is crucial in overcoming challenges such as desiccation stress after eclosion and before finding a suitable vertebrate host to obtain a bloodmeal.
显示更多 [+] 显示较少 [-]Generation of naïve blastoderm explants from zebrafish embryos 全文
2021
Alaniz Emig, Alyssa | Williams, Margot L. K.
Due to their optical clarity and rapid development, zebrafish embryos are an excellent system for examining cell behaviors and developmental processes. However, because of the complexity and redundancy of embryonic signals, it can be challenging to discern the complete role of any single signal during early embryogenesis. By explanting the animal region of the zebrafish blastoderm, relatively naïve clusters of embryonic cells are generated that can be easily cultured and manipulated ex vivo. By introducing a gene of interest by RNA injection before explantation, one can assess the effect of this molecule on gene expression, cell behaviors, and other developmental processes in relative isolation. Furthermore, cells from embryos of different genotypes or conditions can be combined in a single chimeric explant to examine cell/tissue interactions and tissue-specific gene functions. This article provides instructions for generating zebrafish blastoderm explants and demonstrates that a single signaling molecule - a Nodal ligand - is sufficient to induce germ layer formation and extension morphogenesis in otherwise naïve embryonic tissues. Due to their ability to recapitulate embryonic cell behaviors, morphogen gradients, and gene expression patterns in a simplified ex vivo system, these explants are anticipated to be of great utility to many zebrafish researchers.
显示更多 [+] 显示较少 [-]Interaction between phonological and semantic processes in visual word recognition using electrophysiology 全文
2021
Wang, Yuling | Jiang, Minghu | Xu, Xinyi | Huang, Yunlong
Controversies have always existed in research related to reading abilities; on whether printed words are perceived in a feedforward manner based on orthographic information after which, other representations, such as phonology and semantics are activated, or whether these are fully interactive and high-level semantic information affects early processing. An interference paradigm was implemented in the presented protocol of phonological and semantic judgment tasks that utilized the same precede-target pairs to explore the relative order of phonological and semantic activation. The high- and low-frequency target words were preceded with three conditions: semantically related, phonological-related (homophones), or unrelated. The results showed that the induced P200 component of low-frequency word pairs was significantly greater than high-frequency words in both the semantic and phonological tasks. In addition, both the homophones in the semantic task and the semantically related pairs in the phonological task caused reduction in N400 when compared to the the control condition, word frequency-independently. It is worth noting that for the low-frequency pairs in the phonological judgment task, the P200 released by the semantically related word pairs was significantly larger than that in the control condition. Overall, semantic processing in phonological tasks and phonological processing in semantic tasks were found in both high- and low-frequency words, suggesting that the interaction between semantics and phonology may operate in a task-independent manner. However, the specific time this interaction occurred may have been affected by the task and frequency.
显示更多 [+] 显示较少 [-]Near infrared photoimmunotherapy for mouse models of pleural dissemination 全文
2021
Yasui, Hirotoshi | Nishinaga, Yuko | Taki, Shunichi | Takahashi, Kazuomi | Isobe, Yoshitaka | Sato, Kazuhide
The efficacy of photoimmunotherapy can be evaluated more accurately with an orthotopic mouse model than with a subcutaneous one. A pleural dissemination model can be used for the evaluation of treatment methods for intrathoracic diseases such as lung cancer or malignant pleural mesothelioma. Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed cancer treatment strategy that combines the specificity of tumor-targeting antibodies with toxicity caused by a photoabsorber (IR700Dye) after exposure to NIR light. The efficacy of NIR-PIT has been reported using various antibodies; however, only a few reports have shown the therapeutic effect of this strategy in an orthotopic model. In the present study, we demonstrate an example of efficacy evaluation of the pleural disseminated lung cancer model, which was treated using NIR-PIT.
显示更多 [+] 显示较少 [-]Extraction of cofactor f420 for analysis of polyglutamate tail length from methanogenic pure cultures and environmental samples 全文
2021
Markt, Rudolf | Wunderer, Mathias | Prem, Eva Maria | Mutschlechner, Mira | Lackner, Nina | Wagner, Andreas Otto
The cofactor F420 plays a central role as a hydride carrier in the primary and secondary metabolism of many bacterial and archaeal taxa. The cofactor is best known for its role in methanogenesis, where it facilitates thermodynamically difficult reactions. As the polyglutamate tail varies in length between different organisms, length profile analyses might be a powerful tool for distinguishing and characterizing different groups and pathways in various habitats. Here, the protocol describes the extraction and optimization of cofactor F420 detection by applying solid-phase extraction combined with high-performance liquid chromatography analysis independent of cultural or molecular biological approaches. The method was applied to gain additional information on the expression of cofactor F420 from microbial communities in soils, anaerobic sludge, and pure cultures and was evaluated by spiking experiments. Thereby, the study succeeded in generating different F420 tail-length profiles for hydrogenotrophic and acetoclastic methanogens in controlled methanogenic pure cultures as well as from environmental samples such as anaerobic digester sludge and soils.
显示更多 [+] 显示较少 [-]Developing 3d organized human cardiac tissue within a microfluidic platform 全文
2021
Veldhuizen, Jaimeson | Nikkhah, Mehdi
The leading cause of death worldwide persists as cardiovascular disease (CVD). However, modeling the physiological and biological complexity of the heart muscle, the myocardium, is notoriously difficult to accomplish in vitro. Mainly, obstacles lie in the need for human cardiomyocytes (CMs) that are either adult or exhibit adult-like phenotypes and can successfully replicate the myocardium's cellular complexity and intricate 3D architecture. Unfortunately, due to ethical concerns and lack of available primary patient-derived human cardiac tissue, combined with the minimal proliferation of CMs, the sourcing of viable human CMs has been a limiting step for cardiac tissue engineering. To this end, most research has transitioned toward cardiac differentiation of human induced pluripotent stem cells (hiPSCs) as the primary source of human CMs, resulting in the wide incorporation of hiPSC-CMs within in vitro assays for cardiac tissue modeling. Here in this work, we demonstrate a protocol for developing a 3D mature stem cell-derived human cardiac tissue within a microfluidic device. We specifically explain and visually demonstrate the production of a 3D in vitro anisotropic cardiac tissue-on-a-chip model from hiPSC-derived CMs. We primarily describe a purification protocol to select for CMs, the co-culture of cells with a defined ratio via mixing CMs with human CFs (hCFs), and suspension of this co-culture within the collagen-based hydrogel. We further demonstrate the injection of the cell-laden hydrogel within our well-defined microfluidic device, embedded with staggered elliptical microposts that serve as surface topography to induce a high degree of alignment of the surrounding cells and the hydrogel matrix, mimicking the architecture of the native myocardium. We envision that the proposed 3D anisotropic cardiac tissue-on-chip model is suitable for fundamental biology studies, disease modeling, and, through its use as a screening tool, pharmaceutical testing.
显示更多 [+] 显示较少 [-]Transuterine fetal tracheal occlusion model in mice 全文
2021
Aydın, Emrah | Joshi, Rashika | Oria, Marc | Lim, Foong-Yen | Varisco, Brian Michael | Peiro, Jose Luis
Fetal tracheal occlusion (TO), an established treatment modality, promotes fetal lung growth and survival in severe congenital diaphragmatic hernia (CDH). Following TO, retention of the secreted epithelial fluid increases luminal pressure and induces lung growth. Various animal models have been defined to understand the pathophysiology of CDH and TO. All have their own advantages and disadvantages such as the difficulty of the technique, the size of the animal, cost, high mortality rates, and the availability of genetic tools. Herein, a novel transuterine model of murine fetal TO is described. Pregnant mice were anesthetized, and the uterus exposed via a midline laparotomy. The trachea of selected fetuses were ligated with a single transuterine suture placed behind the trachea, one carotid artery, and one jugular vein. The dam was closed and allowed to recover. Fetuses were collected just before parturition. Lung to body weight ratio in TO fetuses was higher than that in control fetuses. This model provides researchers with a new tool to study the impact of both TO and increased luminal pressure on lung development.
显示更多 [+] 显示较少 [-]Systematic scoring analysis for intestinal inflammation in a murine dextran sodium sulfate-induced colitis model 全文
2021
Garcia-Hernandez, Vicky | Neumann, Philipp-Alexander | Koch, Stefan | Lyons, Renae | Nusrat, Asma | Parkos, Charles A.
Murine colitis models are tools that are extensively employed in studies focused on understanding the pathobiology of inflammatory intestinal disorders. However, robust standards for objective and reproducible quantification of disease severity remain to be defined. Most colitis analysis methods rely on limited histological scoring of small segments of intestine, leading to partial or biased analyses. Here, we combine high-resolution image acquisition and longitudinal analysis of the entire colon to quantify intestinal injury and ulceration in the dextran sodium sulfate (DSS) induced model of murine colitis. This protocol allows for the generation of objective and reproducible results without extensive user training. Here, we provide comprehensive details on sample preparation and image analysis using examples of data from DSS induced colitis. This method can be easily adapted to other models of murine colitis that have significant inflammation associated with mucosal injury. We demonstrate that the fraction of inflamed/injured and eroded/ulcerated mucosa relative to the complete length of the colon closely parallels clinical findings such as weight loss amid DSS-induced disease progression. This histological protocol provides a reliable time and cost-effective aid to standardize analyses of disease activity in an unbiased way in DSS colitis experiments.
显示更多 [+] 显示较少 [-]Quantification of optic nerve cross sectional area on mri: a novel protocol using fiji software 全文
2021
Al-Ryalat, Nosaiba | AlRyalat, Saif Aldeen | Malkawi, Lna | Azzam, Muayad | Mohsen, Sana
Optic nerve assessment is an important aspect of glaucoma diagnosis and follow-up. This project describes a protocol for a unified methodology of optic nerve cross-sectional assessment and quantification using 3 T MRI for image acquisition and ImageJ's Fiji software for image processing quantification. Image acquisition was performed using 3 T MRI, with proper instructions for the patient to ensure straight fixation during imaging. A T2-weighted fat suppressed sequence was used. A coronal cut taken 3 mm behind the globe and perpendicular to the optic nerve axis should be uploaded to the software. Using the threshold function, the white matter area of the optic nerve is selected and quantified, thus, eliminating inter-individual measurement bias. We also described the normal limits for the optic nerve cross-sectional area according to age, based on previously published literature. We used the described protocol to assess optic nerve of a suspected glaucoma patient. The optic nerve cross-sectional area was found to be within the normal limits, a finding further confirmed via optical coherence tomography of the optic nerve.
显示更多 [+] 显示较少 [-]Analyzing oxidative stress in murine intestinal organoids using reactive oxygen species-sensitive fluorogenic probe 全文
2021
Stedman, Aline | Levy, Antonin | Sansonetti, Philippe J. | Nigro, Giulia
Reactive oxygen species (ROS) play essential roles in intestinal homeostasis. ROS are natural by-products of cell metabolism. They are produced in response to infection or injury at the mucosal level as they are involved in antimicrobial responses and wound healing. They are also critical secondary messengers, regulating several pathways, including cell growth and differentiation. On the other hand, excessive ROS levels lead to oxidative stress, which can be deleterious for cells and favor intestinal diseases like chronic inflammation or cancer. This work provides a straightforward method to detect ROS in the intestinal murine organoids by live imaging and flow cytometry, using a commercially available fluorogenic probe. Here the protocol describes assaying the effect of compounds that modulate the redox balance in intestinal organoids and detect ROS levels in specific intestinal cell types, exemplified here by the analysis of the intestinal stem cells genetically labeled with GFP. This protocol may be used with other fluorescent probes.
显示更多 [+] 显示较少 [-]