细化搜索
结果 1-4 的 4
Use of aVR and Jastrzębski algorithms in the classification of wide complex tachycardia in dogs – a preliminary study
2018
Michałek, Marcin | Frydrychowski, Piotr | Adamowicz, Jakub | Sławuta, Agnieszka | Pasławska, Urszula | Noszczyk-Nowak, Agnieszka
Ventricular rhythm disturbances are a common pathology in human and veterinary medicine. In humans, the algorithmic approach is used to differentiate wide QRS complex tachycardia. The most commonly used are the aVR and Brugada algorithms as well as the ventricular tachycardia (VT) score developed by Jastrzębski and coworkers. In veterinary medicine, no such algorithms are available and the only parameter used to describe VT abnormalities is the duration of the QRS complexes. The aim of this analysis was determining whether human medicine algorithms for VT are applicable in veterinary medicine to differentiate wide QRS complex tachycardia in dogs. A retrospective analysis was performed on 11 dogs of both sexes and various breeds and age diagnosed with VT. The diagnosis was based on ambulatory ECG, further established based on the reaction to lidocaine or adenosine or an invasive electrophysiological study. Of the 11 tracings passed through the aVR algorithm, 10 met the VT criteria. The most common criterion was the Vi/Vt ratio (8 out of 11 tracings). Based on the VT score, seven out of eight dogs had a high probability of VT. Retrospective analysis of ECGs by aVR and VT score indicates that the applied algorithms may be useful in differentiating wide QRS complex tachycardia as a quick, easy, and non-invasive alternative to cardiac electrophysiology.
显示更多 [+] 显示较少 [-]Effects of tiletamine-xylazine-tramadol combination and its specific antagonist on AMPK in the brain of rats
2019
Ma, Ning | Li, Xin | Wang, Hong-bin | Gao, Li | Xiao, Jian-hua
Introduction: Tiletamine-xylazine-tramadol (XFM) has few side effects and can provide good sedation and analgesia. Adenosine 5’-monophosphate-activated protein kinase (AMPK) can attenuate trigeminal neuralgia. The study aimed to investigate the effects of XFM and its specific antagonist on AMPK in different regions of the brain. Material and Methods: A model of XFM in the rat was established. A total of 72 Sprague Dawley (SD) rats were randomly divided into three equally sized groups: XFM anaesthesia (M group), antagonist (W group), and XFM with antagonist interactive groups (MW group). Eighteen SD rats were in the control group and were injected intraperitoneally with saline (C group). The rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus, and brain stem were immediately separated, in order to detect AMPKα mRNA expression by quantitative PCR. Results: XFM was able to increase the mRNA expression of AMPKα1 and AMPKα2 in all brain regions, and the antagonist caused the opposite effect, although the effects of XFM could not be completely reversed in some areas. Conclusion: XFM can influence the expression of AMPK in the central nervous system of the rat, which can provide a reference for the future development of anaesthetics for animals.
显示更多 [+] 显示较少 [-]Effects of an adenosine kinase inhibitor and an adenosine deaminase inhibitor on accumulation of extracellular adenosine by equine articular chondrocytes
2002
Tesch, Anthony M. | MacDonald, Melinda H. | Kollias-Baker, Cynthia | Benton, Hilary P.
Objective-To investigate accumulation of extracellular adenosine (ADO) by equine articular chondrocytes and to compare effects of adenosine kinase inhibition and adenosine deaminase inhibition on the amount of nitric oxide (NO) produced by lipopolysaccharide (LPS)-stimulated chondrocytes. Sample Population-Articular cartilage from metacarpophalangeal and metatarsophalangeal joints of 14 horses. Procedure-Chondrocytes were cultured as monolayers, and cells were incubated with LPS, the adenosine kinase inhibitor 5'-iodotubercidin (ITU), or the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3- nonyl)adenine hydrochloride (EHNA). Concentrations of ADO in cell supernatants were measured by use of reverse-phase high-performance liquid chromatography. Effect of inhibition of enzymatic metabolism of ADO on induced NO production was evaluated by exposing cells to a combination of LPS and ITU or LPS and EHNA. Results-Articular chondrocytes accumulated extracellular ADO when exposed to LPS or ITU. Chondrocytes exposed to ITU accumulated ADO in a time-dependent manner. Unstimulated chondrocytes did not accumulate ADO. Similarly, EHNA alone did not produce detectable ADO concentrations; however, addition of EHNA and ITU resulted in a synergistic effect on accumulation of ADO. Lipopolysaccharideinduced NO production was more effectively suppressed by exposure to ITU than to EHNA Conclusions and Clinical Relevance-Equine articular chondrocytes release ADO in response to the proinflammatory stimulus of bacterial LPS. Inhibition of the metabolism of ADO increases accumulation of extracellular ADO. Autocrine release of ADO from chondrocytes may play a role in the cellular response to tissue damage in arthritic conditions, and pharmacologic modulation of these pathways in joints of arthritic horses could be a potential method of therapy.
显示更多 [+] 显示较少 [-]Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues
2003
Zhou, Jizhong | Vickroy, Thomas W.
Objective-To determine the presence of adenosine receptor subtypes A1 and A2a in equine forebrain tissues and to characterize the interactions of caffeine and its metabolites with adenosine receptors in the CNS of horses. Sample Population-Brain tissue specimens obtained during necropsy from 5 adult male research Procedures-Membrane-enriched homogenates from cerebral cortex and striatum were evaluated by radioligand binding assays with the A1-selective ligand [3H]DPCPX and the A2a-selective ligand [3H]ZM241385. Functional responses to adenosine receptor agonists and antagonists were determined by a nucleotide exchange assay using [35S]-guanosine 5'-(γ-thio) triphosphate [35S]GTPγS). Results-Saturable high affinity [3H]DPCPX binding (A1) sites were detected in cerebral cortex and striatum, whereas high-affinity [3H]ZM241385 binding (A2a) sites were detected only in striatum. Caffeine and related methylxanthines had similar binding affinities at A1 and A2a sites with rank orders of drug binding affinities (theophylline > paraxanthine ≥ caffeine >> theobromine) similar to other species. [35S]GTPγS exchange revealed that caffeine and its metabolites act as pure adenosine receptor antagonists at concentrations that correspond to A1 and A2a receptor binding affinities. Conclusions and Clinical Relevance-Results of our study affirm the presence of guanine nucleotide binding protein linked adenosine receptors (ie, high-affinity A1 and A2a adenosine receptors) in equine forebrain tissues and reveal the antagonistic actions by caffeine and several biologically active caffeine metabolites. Antagonism of adenosine actions in the equine CNS by these stimulants may be responsible for some central actions of methylxanthine drugs, including motor stimulation and enhanced racing performance.
显示更多 [+] 显示较少 [-]